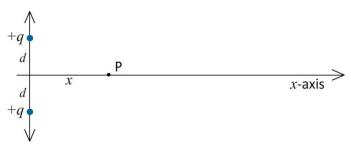
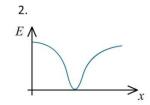

Electric charges and Fields

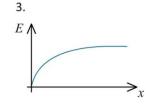
Coulomb's law and electric field

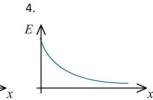
- 1. Two charges Q_1 and Q_2 are separated by a fixed distance. If the charges are such that $Q_1 Q_2 < 0$ then choose the correct statement(s) from the following
 - 1. Force between them should be attractive
 - 2. Force between them should be repulsive
 - 3. Force between them may be attractive
 - 4. Force between them may be repulsive
- 2. Two insulated small copper spheres A and B of identical dimensions have charges 2μ C and -6μ C respectively. A third identical uncharged sphere is brought in contact first with A and then with B and then removed. Final charges on the spheres are ______
- 3. Two point charges separated by a distance r attract each other with a force F. If the charges are doubled and the medium between them is replaced with a material of relative permittivity 4 then force between the charges would be _____
- 4. Two insulated small copper spheres of identical dimensions having charges Q and nQ are separated by a certain distance (much larger when compared to the radius of the spheres) . If they are brought in contact and then separated by the same distance again then the force of interaction between then choose the correct statement(s) from the following
 - 1. Increases by a factor of 16/7 if n is +7
 - 2. Decreases by a factor of 16 if n is +7
 - 3. Increases by a factor of 5/4 if n is -5
 - 4. Decreases by a factor of 4/5 if n is -5
- 5. In the figure given below, force acting on any one of the charges is ______



6. In the figure given below, force acting on any one of the charges is ______




Electric charges and Fields


7. For the given charge distribution plot of electric field intensity as a function of x is (like point charges long the y axis)

1. *E*

8. Electric field intensity at the centre of a uniformly charged ring of radius 1m carrying of linear charge density $2\mu C \, m^{-1}$ is _____

9. Two point charges 4Q and Q are separated by a distance of 1m in air. Locate the point at which net electric field intensity is zero is at a distance of _____ from the lager charge

10. Two point charges of 50nC and -50nC are placed at a distance of 20cm from each other in air. Electric field intensity at the midpoint of the line joining the charges is _____

Electric charges and Fields

- 1. Option 1
- 2. $Q_{\rm A}$ = 1 μ C, $Q_{\rm B}$ = -2.5 μ C and $Q_{\rm C}$ = -2.5 μ C
- 3. 16 F
- 4. Options 1 and 4

$$5. \quad \frac{\sqrt{3}}{4\pi\varepsilon_{o}} \left(\frac{Q^{2}}{r^{2}}\right)$$

- 6. $\frac{1}{4\pi\varepsilon_{o}}\frac{Q^{2}}{r^{2}}\left(\sqrt{2}-\frac{1}{2}\right)$ away from the centre
- 7. Graph 1
- 8. zero
- 9. 2/3 m
- 10. 9x10⁴ NC⁻¹